

Detection of Low-Temperature Heat Treatment in Corundum:

Possibilities and Challenges

Dr. Michael S. Krzemnicki

Director, Swiss Gemmological Institute SSEF

Photos and figures © M.S. Krzemnicki and SSEF, except where indicated otherwise

Heat Treatment of Corundum

approx. temperature ranges as by gemmological literature

- In most cases, heat treatment results in a change/shift of colour.
- The lower the heating temperature the more challenging is its detection!

Heat Treatment of Corundum

Unheated ruby from Mozambique.

Heat treatment at low temperatures mostly applied to remove bluish zones and slightly shift purplish sapphires to a pink colour.

Detection of Heat Treatment

No magic "black box" for heat treatment detection !

Detection of Heat Treatment

Always a combination of 'classic' microscopy, UV reaction, and spectroscopic analyses (Infrared- and Raman spectroscopy).

Detection of Heat Treatment: 'Classic' Methods

Microscopy

'Classic' heat treatment

Low-temperature heat treatment

Atoll-structures (discoid extension features) and "spotted" platelets are among those microscopic features indicating a heat treatment process.

However, such characteristic features are often absent or very difficult to see, specifically in stones heated at lower temperatures (< 1000 °C)

Detection of Heat Treatment: 'Classic' Methods

UV Reaction

"chalky" whitish reaction under shortwave ultraviolet may indicate a heat treatment (at higher temperatures).

However, most heated corundum will not show such reaction (and even certain unheated stones may show similar whitish UV reactions!

Detection of Heat Treatment: 'Classic' Methods

Summarising: Classic detection methods Microscopy and UV reaction

- Microscopy remains to date very important for heat treatment detection.
- Obvious alterations of inclusions usually can be observed after heating at higher temperatures (beyond 1200 °C).
- In case of low-temperature heated stones, evident features for such treatment are often rather difficult to see or even absent.
- The same applies for stones which have no inclusions at all.

Infrared Spectroscopy (FTIR)

SSEF

| GILC Conference | 29th January 2024 | PAGE 9

Infrared Spectroscopy (FTIR) of unheated and heated Corundum

FTIR-Spectra of Mozambique Rubies

However, not all corundum will show such characteristic peak series!

with different FTIR instruments!

sapphire in different orientations!

Summarising: Infrared analyses

- FTIR spectra are very important for heat treatment detection.
- Specifically in cases in which no microscopic heating feature is present (e.g. low-T heat treatment).
- There is quite a large consensus in the gemmological scientific community and between the laboratories about key features of FTIR spectra indicating heating in corundum.
- A main issue remains the impact of anisotropy (sample orientation) on FTIR spectra and differences in instrumental sensitivity.

Raman micro-spectroscopy is a powerful tool to analyse a gemstone and its inclusions.

The laser beam focused through the microscope locally excites the molecules of the sample which results in a characteristic (vibrational) Raman spectrum of that sample/inclusion.

Scheme (slightly modified) from Bonales et al. 2016

Zircon inclusions may provide important information about heat treatment (and origin) of corundum.

"Hot" pink sapphire from Ilakaka (Madagascar) containing many small zircon inclusions.

Specifically useful for pink sapphires from Madagascar (Ilakaka).

SSEF

Spectra of zircon 4604 (dose = $3.5 \times 10^{18} \alpha$ -events g⁻¹) annealed at different temperatures for one hour.

Zhang *et al. 2000*

Heating experiment of pink sapphire, Madagascar containing numerous tiny zircon inclusions!

In-house developed automated peak calculation (Dr Hao Wang).

SSEF

Heated in oxidizing conditions at 1000° C for 1 hour (peak T). Analysed before and after !

Peak position vs Peak width (FWHM) Diagrams

FWHM of zircons before

FWHM of zircons after heating

Peak position vs Peak width (FWHM) diagrams

However, overlapping FWHM ranges of unheated and heated pink sapphires from Madagascar (Ilakaka) remain a challenge for heat treatment detection.

IGC 2021

The influence of the geographic origin

FWHM range criterion to detect heat treatment is not applicable for corundum from many important gem deposits (e.g. Myanmar, Kashmir, or Basaltic origin).

An additional approach: Phase transformations of hydroxides Diaspore (α-AlOOH) and Goethite (α-FeOOH)

Transformation of goethite to hematite. from Koivula 2013

Sripoonjan et al. 2016

These are so-called **dehydration reactions** which occur when heating up these hydroxides (diaspore, goethite).

Heating Experiment

Heating stage Linkam TS 1200 Coupled with Raman system for in-situ measurements

Glowing ruby at 700 $^\circ \! C$

Step-wise heating, T_{max} per step kept for 4 minutes only Electric muffle furnace Nabotherm LHT 18 - Heating similar to gem trade

Step-wise heating, T_{max} per step kept for 1 hour

Heating in air, step-by-step heating, Raman spectra only after cooling down

Heating Experiment: Diaspore to Corundum

Raman Shift [cm⁻¹] dotted vertical lines: main diaspore peaks

Sample 120993_6 Diaspore in Burmese ruby (Mogok)

Experiment setup: Linkam heating stage

Phase transformation

Diaspore in ruby (image width 2mm).

Heating Experiment: Diaspore to Corundum

dotted vertical lines: main diaspore peaks

Phase transformation

Diaspore in fluid inclusion in sapphire (approx. 10 µm).

Heating Experiment: Goethite to Hematite

Sample 85933_C3 Goethite in Mozambique ruby

Experiment setup: Linkam heating stage

Phase transformation

Goethite in fissure in ruby

dotted vertical lines: main goethite peaks

Raman spectroscopy of diaspore and goethite inclusions prove that the ruby and sapphire are unheated, although their infrared spectra is similar to heated corundum!

Estrela de Fura 55.22 ct

Sold at Sotheby's auction in June 2023 for record \$34.8 million.

Diaspore detected in fluid inclusion!

from Sotheby's International

Real Cases

SSEF

Summarising: Raman analyses

- Raman spectroscopy on inclusions is a **very promising** tool to separate unheated corundum from low-temperature heated corundum.
- The zircon peak-width criterion (FWHM) is challenging (specifically to detect low-temperature heated corundum) and cannot be applied on corundum from certain (geologically young) gem deposits.
- However, the phase transformations of diaspore and goethite are key to separate unheated corundum from low-temperature heated stones.
- Our experiments confirm that diaspore and goethite transform (dehydrate) at about 325 °C (goethite to hematite) and about 550 °C (diaspore to corundum).
- The presence of diaspore and/or goethite is a **clear indication**, that a corundum is **not heated**, even in cases when FTIR may reveal peaks which could be (mis)interpreted as related to heating.

Summarising: Raman analyses

Citation: Krzemnicki, M.S.; Lefèvre, P.; Zhou, W.; Braun, J.; Spiekermann, G. Dehydration of Diaspore and Goethite during Low-Temperature

https://doi.org/10.3390/ min13121557

Take Home Messages

- Detection of low-temperature heating of corundum is **challenging**.
- The best is to use a **combined approach** ('classic' and spectroscopic methods), although microscopic features indicating heating may not be present.
- Infrared (FTIR) and Raman spectroscopy are key for separating unheated from heated stones.
- Scientific research in germology **constantly evolves**, actually parallel to the development of new treatment processes and the discovery of new deposits.
- Consequently, **new findings** may lead in certain cases also to **new conclusions**, similar to any other branch of science.
- Gemmological labs exchange their new findings about treatment detection, by
 - publication of results in scientific journals
 - at gemmological conferences
 - in germological working groups (e.g. LMHC)
 - by inter-lab discussions
- By this we aim to harmonise results as much as possible and as such to support the gemstone trade and public with our expertise.

Thank you for your attention

Corroded calcite inclusions in an unheated Burmese ruby from Mogok.

Get our latest magazine at www.ssef.ch/ssef-facette

