

A Gemmological Approach to Distinguishing Natural from Synthetic Rubies: LA-ICP-TOF mass spectrometry provides new insights

Tashia J. Dzikowski-Hutter, Hao Wang, Michael S. Krzemnicki, Wei Zhou, and Pierre Lefèvre

Price Comparison: Natural vs Synthetic Rubies

Natural Rubies

Natural rubies > \$3000 per carat Good quality natural rubies ≈ \$10,000 to \$18,000 per carat

In 2012, a 6.04 ct Burmese ruby sold for \$551,000 USD per carat

In 2014, the 8.62 ct Burmese Graff Ruby sold for \$8.6 Million = \$997,679 per carat*

Synthetic Rubies

Ramaura

Verneuil= \$1 to \$5 per caratHydrothermal \approx \$90 per caratKnischka \approx \$90 per caratChatham \approx \$24 to \$400 per caratKashan \approx \$150 - \$500 per carat

= \$150 to \$750 per carat

In the trade, prices would be condsiderably lower

Differences between Natural, Synthetic, and Treated Natural or Synthetic Rubies

- Identifying the subtle differences can be difficult because of:
 - Overlapping physical properties and some trace elements
 - Presence of similar inclusions or growth features
 - Absence of inclusions or growth features
 - In addition, the setting of a gemstone may also interfere with analysing trace elements and observing internal features

Analytical Techniques

Optical Microscopy -examine inclusions and growth features

Raman Spectroscopy -identify inclusions

INCLUSIONS IN NATURAL RUBIES

POSSIBLY CONFUSING INCLUSIONS IN NATURAL RUBIES VS SYNTHETIC RUBIES

Rutile needles

GROWTH PATTERNS IN NATURAL RUBIES VS SYNTHETIC RUBIES

Natural Ruby Heated with Flux

Cracked Synthetic Verneuil Ruby Heated with Flux

Knischka Synthetic Ruby with Flux Residue

IRON STAINING VS FLUX RESIDUE

Iron Staining in Natural Ruby |

Orange Flux in Synthetic Ruby (Ramaura)

| Possible Sources of Trace elements in Synthetic Rubies

Melt Czochralski Flame Fusion	Feed Alumina and Cr_2O_3 Alumina and Cr_2O_3	Apparatus Iridium Crucible
Flux Chatham Kashan Knischka	Flux $Li_2O-MoO_3-PbF_2$ and-or PbO Na_3AlF_6 $Li_2O-WO_3-PbF_2$, PbO, $Na_2W_2O_7$, and Ta_2O_5	Pt Crucible Pt Crucible Pt Crucible
Douros Ramaura	PbF ₂ or PbO ₄ Bi ₂ O ₃ -PbF ₂ , also REE dopant added to the flux La ₂ O ₃	Pt Crucible Pt Crucible
Hydrothermal	Alumina or aluminum hydrates partially dissolved in an aqueous medium with Cr compounds such as Na ₂ Cr ₂ O ₇	Metal autoclave containing Fe, Ni, and Cu

Reference: Muhlmeister et al. 1998 and sources within

Analytical Techniques

ED-XRF Spectroscopy

LA-ICP-TOF-MS

Major and Trace elements <

Synthetic

Flame Fusion, Verneuil

Typically very pure

Hydrothermal

Typically very pure

Crystal Pulling, Czochralski

Typically very pure

Synthetic Flux (values in ppm)

	Kashan		Knischka		Chatham
Na	bd - 1371.13	Pt	0.35 - 4.49	Pt	bd - 13.68
Ni	bd - 197.04	W	0.07 - 146.58	Мо	bd - 267.45
V	4.82 - 42.68			Ga	0.08 - 16.46

	Douros		Ramaura
Pt	0.13 - 15.91	Pt	6.57 - 262.95
Rh	bd - 39.70	La	bd - 365.75
Ga	244.80 - 380.61	Pb	bd - 2231.79
		Bi	bd - 837.98
		Ni	bd - 104.49
		Ga	30.45 - 551.85

SUMMARY AND CONCLUSIONS

- Natural rubies typically have many natural mineral inclusions
- It is important to always combine meticulous optical microscopic observations with elemental analyses
- In the presence of similar inclusions or the absence of any inclusions, LA-ICP-TOF-MS results may help differentiate natural from synthetic rubies
- Elevated levels of Pt, Rh, W, Ni, Mo, Na, La, Pb, and Bi can indicate a synthetic flux ruby

| Special Thanks

