36th International Gemmological Conference | August 2019
| STUDY OF A RECUT HPHT SYNTHETIC DIAMOND: COLOUR VS SIZE VS SWUV TRANSMISSION

Presentation by J-P. Chalain

SSEFH

ISTUDY OF A RECUT HPHT SYNTHETIC DIAMOND

LAYOUT

- Context \& Challenges
- Recut of a HPHT synthetic diamond
- Colour vs Size
- SWUV transmission vs Size
- Normalized SWUV transmission vs Colour
- Conclusion

| CONTEXT \& CHALLENGES

ASDI

- ${ }^{\text {st }}$ automated machine for separating natural D to J melees from possible synthetics
- Rejects all colourless diamonds transparent to SW (270 nm)
- So far, N-doped CVD synthetic diamonds are not in the "D - J colour range."

DPA Project Assure

- 2019: ASDI passed 100\% of the DPA-Project Assure Tests
- Testing samples: 1'000 diamonds, 200 simulants \& 200 synthetics $\mid \varnothing$: 1 to 3.8 mm
- Speed rate measured > 6'500 stones/h
- all results available on: https://diamondproducers.com/assure/

Automated Spectral Diamond Inspection - ASDI

|CONTEXT \& CHALLENGES

$$
\begin{aligned}
& \mathrm{T}(\%)=100\left(\mathrm{I} / \mathrm{I}_{0}\right) \\
& \mathrm{Abs}=-\log _{10}(\mathrm{~T} / 1 \mathrm{OO})=\log _{10}\left(\mathrm{I}_{0} / \mathrm{I}\right)
\end{aligned}
$$

SSEF continues to challenge the ASDI
Two goals:

1. Make ourselves small synthetic diamonds (RB, \varnothing : 1.5-2.0 mm)
$>$ with a low [N]
> would possibly enter inside the D-J colour range
> will measure their SWUV transparency

2. Predict the relation between colour grade and SWUV transparency
$>$ for natural and
> synthetic diamonds

RECUT OF A HPHT SYNTHETIC DIAMOND

Selection of a HPHT synthetic diamond:
$>$ Round brilliant cut
$\Rightarrow \varnothing=5.2 \mathrm{~mm}$
> Specifically low [N_{C}]: 1.9 ppm (C centres)

97768 | FTIR spectrum

97768 | Nitrogen concentration

| RECUT OF A HPHT SYNTHETIC DIAMOND

A new challenge:

Recut the selected synthetic into 3 stones of different diameters
> A recut project
> A very precise and extremely thin (25 $\mu \mathrm{m}$) sawing process

Ultra-Precise Laser Machining Center
5-axis Laser system for 3-D applications

| RECUT OF A HPHT SYNTHETIC DIAMOND

SYNOVA | Water Jet Guided Laser Technology
Sawing optical positionning \& results

The 5.2 mm stone sawn at half height of pavillion

Julien Le Clec'ch,
process engineer, SYNOVA

97768 | Cut-off pieces

| RECUT OF A HPHT SYNTHETIC DIAMOND

Mr. Bischoff, Geneva

Polishing was finalized on a traditional scaife

A \& B: after facetting \& polishing

C: boiled in acid, unpolished (no crown, need to be recut)

|COLOUR vs SIZE

Colour measurement on SSEF "ASDI - CGM"
Colorimeter daily used at SSEF for three years now

|COLOUR vs SIZE

Colour measurement on SSEF "ASDI - CGM"
Colorimeter daily used at SSEF for three years now

瓷 University of Basel

|COLOUR vs SIZE

Colour measurement on SSEF "ASDI - CGM" Colorimeter daily used at SSEF for three years now

说 University of Basel

|COLOUR vs SIZE

97768 | Colour measurement on SSEF "ASDI - CGM"

|COLOUR vs SIZE

97768, 97768 A \& 97768 B | compared to SSEF master-stones

97768 C not plotted, Luminance out of range ($\mathrm{L}^{*}=76.0195$)

Ref.	\varnothing (mm)	CIE $\left(\mathrm{L}^{*} a^{*} b^{*}\right)$	Colour Grade
97768	5.2	$(103.4152,-2.1697,6.2871)$	$\mathrm{M}-\mathrm{R}$
97768 A	3.0	$(101.4331,-0.1404,1.5446)$	G
97768 B	2.0	$(98.6827,-3.0896,7.8891)$	$\mathrm{S}-\mathrm{Z}$

|COLOUR vs SIZE

An apparent contradiction: "The colour of the 3 mm recut stone is much lighter than that the 2 mm recut stone."

Ref.	\varnothing (mm)	CIE (L*****)	Colour Grade
97768	5.2	$(103.4152,-2.1697,6.2871)$	$\mathrm{M}-\mathrm{R}$
97768 A	3.0	$(101.4331,-0.1404,1.5446)$	G
97768 B	2.0	$(98.6827,-3.0896,7.8891)$	$\mathrm{S}-\mathrm{Z}$

Theoritically, the thinner the lighter.
So the 3 mm stone is lighter than 2 mm ?

|COLOUR vs SIZE

An apparent contradiction: "The colour of the 3 mm recut stone is much lighter than that the 2 mm recut stone."

Ref.	\varnothing (mm)	CIE (L**$\left.{ }^{*} b^{*}\right)$	Colour Grade
97768	5.2	$(103.4152,-2.1697,6.2871)$	$\mathrm{M}-\mathrm{R}$
97768A	3.0	$(101.4331,-0.1404,1.5446)$	G
97768 B	2.0	$(98.6827,-3.0896,7.8891)$	$\mathrm{S}-\mathrm{Z}$

97768

Theoritically, the thinner the lighter.
So the 3 mm stone is lighter than 2 mm ?
Because the distribution of the yellow colour (C centres) inside the grown crystal is inhomogeneous. Its core is colourless and its rim is yellow

The larger stone (A) cut at the centre of the crystal, is colourless (G colour grade)
The smaller stone (B) cut at one summet of the crystal, is yellow (S-Z)

|SWUV TRANSMISSION vs SIZE

97768 A (G colour) | SWUV transmission (ASDI) \& Absorption coefficient

97768 A (3.0 mm) REFERRED FOR ITS SWUV TRANSPARENCY (7.5 V)

|SWUV TRANSMISSION vs SIZE

97768 B (S-Z, out of ASDI spec) SWUV absorption coefficient

| CONCLUSION

OPTICAL PROPERTIES

$>$ Inhomogeneous distribution of colour in a HPHT synthetic diamond of low [N]
> Relationship between colour \& SWUV transmission for synthetics and naturals

SWUV transmission remains an efficient method for fast screening of D-J melee diamonds

For more data, we will soon recut two additional
HPHT synthetic diamonds with low [N]

ITHANK YOU

CO_AUTHOURS
Ly Phan¹, Michael S. Krzemnicki¹, Hao Wang¹ Jörg Pausch², Julien Le Clec'ch² Michael Steinacher ${ }^{3}$
(1) Swiss Gemmological Institute SSEF, Basel, Switzerland (2) Synova SA, Duillier, Switzerland
(3) Department of Physics, University of Basel, Basel, Switzerland

SPECIAL THANKS TO

Stephan Bischoff, STEN Sarl, Geneva
Pierre Lefèvre, Luc Pan \& Vito Lanzafame, SSEF

Michael Steinacher fine tuning the ASDI machine

