
38     THE JOURNAL OF GEMMOLOGY,  36(1), 2018

FEATURE ARTICLE

A Preliminary SIMS Study 
Using Carbon Isotopes 
to Separate Natural from 
Synthetic Diamonds
Hao A. O. Wang, Laurent E. Cartier, Lukas P. Baumgartner,  
Anne-Sophie Bouvier, Florence Bégué, Jean-Pierre Chalain and 
Michael S. Krzemnicki

This preliminary study focuses on using secondary ion mass spectrometry (SIMS) to measure 

relative carbon isotope ratios for natural and synthetic diamonds (i.e. those grown by both 

chemical vapour deposition [CVD] and high-pressure, high-temperature [HPHT] techniques). 

The synthetic diamonds (of both CVD and HPHT origin) had significantly lower relative carbon 

isotope values than the natural diamonds. The lowest value was obtained for the CVD synthetic 

diamond sample, in agreement with results from other investigators. More research is desirable 

on the carbon isotope variation of synthetic diamonds.

INTRODUCTION

N
atural diamonds have been used in jewellery 

and for industrial purposes (e.g. abrasives) 

for centuries (Harlow, 1998). They consti-

tute some of the most famous and valuable 

gems found worldwide. Diamonds form in the earth’s 

mantle, and a number of different hypotheses for their 

specific geological formation continue to be discussed 

(Stachel and Harris, 2009; Stachel and Luth, 2015) and 

reviewed (Cartigny et al., 2014) in the literature. The 

chemical and physical properties of diamonds also  

are widely studied subjects (Clark et al., 1979; Shirey 

et al., 2013; Zaitsev, 2013).

However, openly available research on the identifi-

cation and formation of synthetic diamonds is much 

scarcer. Synthetic diamonds were first produced in the 

1950s in the USA and Sweden (Angus, 2002; Martineau 

et al., 2004). In recent years, advances in CVD and 

HPHT technology—the two methods used to synthe-

size diamonds—have made these synthetics much 

more widely available and of higher quality (Figure 1). 

The introduction of undisclosed synthetic diamonds 

into the market has become a critical issue for the 

diamond and jewellery industry at large (Even-Zohar, 

2012; Kitawaki et al., 2013; Sheintal, 2015). Although 

various laboratory techniques involving spectroscopy 

(Fourier-transform infrared, ultraviolet-visible–near 

infrared and photoluminescence) and imaging (ultra-

short-wave UV and cathodoluminescence) can be used 

to distinguish natural from synthetic diamonds, further 

research is required to understand their formation 

mechanisms (Shigley et al., 1997; Wang et al., 2003). 

Rapid developments in both CVD and HPHT 

technology require that research keep pace to ensure 

synthetic diamonds can be conclusively identified  

in the future, and to maintain consumer confidence 

in the diamond trade. Isotopic studies, such as those 

using SIMS instrumentation that are presented in 

this article, provide additional information for such 

efforts. Other studies that have applied SIMS to 

diamond research—for purposes of documenting 

chemical zoning and distinguishing different geolog-

ical sources—include those by Hauri et al. (2002), 

Deines and Harris (2004), Cartigny (2005), Palot et 

al. (2012, 2014) and Stern et al. (2014). In addition, 
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Wang et al. (2014) used SIMS to investigate carbon 

isotopes in both natural and CVD synthetic diamonds. 

The current study includes HPHT synthetics along 

with CVD and natural samples. 

SAMPLE SELECTION  
AND PREPARATION

Nine faceted samples were examined for this study: 

five natural diamonds, three colourless HPHT-grown 

synthetics and one colourless CVD synthetic 

diamond. The geological origin of the five natural 

diamonds and the exact manufacturing processes 

of the synthetic diamonds are not known. The 

samples were randomly chosen from different types 

of diamonds found in the market. Table I provides a 

summary of the samples.

To prepare them for analysis, the samples were 

pressed into indium metal in a sample holder. They 

were mounted with their table surface (or other large 

flat surface) facing upward. Last, the prepared holder 

was coated with gold before being inserted into the 

SIMS sample chamber. 

METHODS

SIMS is an ion-beam microprobe technique used in 

surface analysis. The high sensitivity, high mass- 

resolving power and micrometre- to nanometre-scale 

spatial resolution of SIMS have made it a widely used 

technique in advanced materials research (Benning-

hoven et al., 1987; de Laeter, 2001). A primary ion 

beam is used to ionize elements on a sample’s 

surface, thereby generating secondary ions that 

are analysed using a mass spectrometer. The SIMS 

method has a wide range of applications, including 

the analysis of carbon and nitrogen isotopes. 

Table I: Diamond samples analysed for this study.

Sample no. Weight (ct) Origin Colour

1 (reference) 0.136 Natural Brownish

2 0.088 Natural Colourless

3 0.628 Natural Grey

4 0.062 Natural Green

5 0.028 Natural Colourless

6 0.230 HPHT synthetic Colourless

7 0.019 HPHT synthetic Colourless

8 0.031 HPHT synthetic Colourless

9 0.092 CVD synthetic Colourless

Figure 1: Seven colourless 
and fancy-colour diamonds 
(weighing up to 3.03 ct)  
of various natural or 
synthetic origins are shown 
here. The top-right and 
bottom-left round brilliants 
are HPHT- and CVD-grown, 
respectively, and the other 
diamonds are natural. 
The confident separation 
of natural and synthetic 
diamonds is critical to 
maintaining consumer 
confidence in the trade. 
Composite photo by  
Luc Phan, SSEF.
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The carbon isotopes in our samples were measured 

using a Cameca IMS 1280-HR instrument (Figure 2)  

at the SwissSIMS facility of the Institute of Earth 

Sciences at the University of Lausanne, Switzerland 

(Seitz et al., 2017; Siron et al., 2017). We used a 10 kV 

Cs+ primary beam and an ~0.6 nA current, resulting 

in an ~10 µm rastered beam size. An electron flood 

gun, with normal incidence, was used to compen-

sate charges. We gathered 12C– and 13C– secondary 

ions, accelerated at 10 kV, in multi-collection mode 

using a Faraday cup (for 12C–) and an electron multi-

plier (for 13C–). A mass resolving power of ~6,000 

was achieved, to overcome polyatomic interfer-

ence of 13C– with 12CH–, for example (Fitzsimons 

et al., 1999). The Faraday cup was calibrated at the 

beginning of the session. Each spot analysis took ~7 

minutes, including pre-sputtering (60 seconds) and 

automated centring of secondary ions. The results of 

the analyses were expressed as the isotopic signature 

�13C, which is a measure of the ratio of the isotopes 
13C/12C, reported in parts per thousand (per mil, ‰). 

Since no standard reference diamond of known 

isotopic composition was available for this work, 

accurate �13C values were not obtainable. Neverthe-

less, the analyses were precise, and differences were 

meaningful. Natural diamond sample 1 was found 

to yield relatively homogeneous 13C/12C ratios (2� =  

0.21‰, 18 analyses). Therefore, for the purpose of 

qualitative analysis in this study, sample 1 was used 

as an external reference diamond to which the carbon 

isotope ratios for all other samples were normal-

ized. For samples 2–9, four or five separate cluster 

locations on their surfaces were measured to address 

possible sample heterogeneity. At each cluster 

location, three SIMS analyses were carried out. The 

distance between these three replicates was much 

smaller compared to that between different cluster 

locations on a sample. After every six measurements 

of samples 2–9, two analyses were carried out on 

sample 1. Instrument drift over time was corrected 

in post-data evaluation using third-order polynomial 

fitting of the 13C/12C signal of sample 1. In addition, 

a homogeneity test was conducted on the surface of 

sample 2, in which two orthogonal directions across 

the table were scanned by lines of spots. Each SIMS 

analysis spot measured 10 µm in diameter and had a 

depth of less than a few hundred nanometres, which 

is not visible to the unaided eye. To remove the thin 

gold coating required for SIMS analysis, the samples 

were immersed in aqua regia that was heated to 

40°C.

Ideally, �15N also would be a candidate to distin-

guish synthetic from natural diamonds. There are 

numerous studies investigating �15N in natural 

diamonds (Cartigny et al., 2001; Cartigny, 2005; 

Hogberg et al., 2016). However, the nitrogen concen-

trations in the synthetic samples randomly selected 

for this study were below the detection limit of the 

SIMS instrument. Natural type II diamonds also 

contain amounts of nitrogen that cannot be detected 

by SIMS. Therefore, using nitrogen isotope ratios to 

determine natural or synthetic origin is not applicable 

to general cases and was not pursued in this study. 

The present research thus focused on using SIMS 

to determine normalized carbon isotope ratios, 

which could be measured on a relative basis without 

the use of a standard. To obtain quantitative data, 

it would be imperative to have bulk �13C results on 

a reference sample. This was not pursued in the 

context of this preliminary study, as the aim was to 

investigate only the possible separation of natural 

from synthetic diamonds. 

a

b

c

d

e

Figure 2: The SIMS 
instrument (Cameca IMS 
1280-HR) at the SwissSIMS 
facility of the University of 
Lausanne consists of the 
following components:  
(a) sample chamber,  
(b) primary ion source,  
(c) electrostatic analyser, 
(d) magnet and  
(e) detection unit.  
Photo courtesy of 
SwissSIMS, University  
of Lausanne.
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RESULTS

A summary of the carbon isotopic values is shown in 

Figure 3. Relative �13C for the four measured natural 

diamonds (samples 2–5) varied from –2.16 ±  

0.56‰ (2�) to –1.31 ± 0.43‰ (2�). The three HPHT 

synthetic diamonds (samples 6–8) had lower relative 

�13C values ranging between –14.55 ± 1.21‰ (2�) 

and –11.84 ± 1.78‰ (2�). The CVD synthetic 

diamond (sample 9) had the lowest relative �13C 

value of –51.99 ± 1.63‰ (2�), which is consistent 

with the work of Wang et al. (2014), who found that 

there was no overlap of �13C values for the natural 

and CVD synthetic diamonds they analysed. The 

low 13C/12C ratio for the CVD synthetic diamond 

might be explained by the 13C-depleted methane 

used as a synthetic precursor to obtain good crystal 

quality and a flat surface on the CVD plates (Fiori 

et al., 2013). For HPHT-grown synthetic diamonds, 

the carbon source is different (commonly graphite), 

and fractionation in these crystals was investigated in 

detail by Reutsky et al. (2008). According to Cartigny 

(2005), there are three commonly hypothesized 

explanations for the different �13C values found in 

natural diamonds: (1) distinct carbon sources (i.e. 

different geological origins), (2) primordial isotopic 

variability and (3) fractionation of stable isotopes at 

mantle temperatures. 

For the purpose of evaluating synthetic vs. natural 

origin, we observed no significant differences in 

relative carbon isotope ratios in the different areas 

analysed on the surfaces of the individual samples 

(both natural and synthetic). Nevertheless, other 

studies have shown that growth orientation and 

sectorization in natural and synthetic diamonds can 

have an influence on �13C and �15N ratios (Boyd et 

al., 1992; Bulanova et al., 2002, Reutsky et al., 2008; 

Fiori et al., 2013). Figure 4 shows the minor varia-

bility of relative �13C values in both of the line scans 

across the table facet of sample 2.

Figure 4: Sample 2,  
a colourless old-mine cut 

natural diamond of 0.088 ct  
(2.53 × 2.35 × 2.13 mm), 

exhibits only minor variability 
of relative �13C values in both 
directions across the surface 

of the table facet. The four 
white spots indicate cluster 
locations (three data points 
each) of SIMS analyses, and 

the arrows show the locations 
of the SIMS analytical 

traverses. Near the top- 
right cluster are three black 

spots resulting from laser 
ablation inductively coupled 
plasma mass spectrometry 
(performed for a separate 

study). Photo by SSEF.
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Figure 3: Relative �13C values are presented here for the 
four natural diamonds and the four of synthetic (HPHT  
and CVD) diamonds.
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CONCLUSIONS

Among the samples analysed in this SIMS study, 

the synthetic diamonds had distinctly lower relative 
13C/12C values than the randomly selected natural 

samples. The data also showed that HPHT and CVD 

synthetic diamonds potentially can be distinguished 

from one another on the basis of their relative carbon- 

isotope ratios. More research is required to under-

stand �13C variability and fractionation in synthetic 

diamonds. In addition, this preliminary study has 

shown the need for a carbon-isotope standard to 

obtain quantitative data for comparison with other 

diamond carbon-isotope studies. Future research 

using the SIMS technique will continue to provide 

a deeper understanding of diamond growth, and as 

such is complementary to other methods being used 

to separate natural from synthetic diamonds.
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