New Developments in Pearl Analysis: X-ray micro Tomography and Radiocarbon 14C Age Dating

Michael S. Krzemnicki1,
Sebastian Friess2,
P. Chalus3,
Irka Hajdas4,
Lukas Wacker4
Henry A. Hänni5

1 SSEF Swiss Gemmological Institute, Switzerland,
2 Gloor Instruments AG, Uster, Switzerland
3 F. Hoffmann-La Roche AG, Basel, Switzerland
4 Laboratory of Ion Beam Physics, ETH Zurich, Switzerland
5 Research Associate of SSEF Swiss Gemmological Institute

Pearls, pearls, pearls...
Radiocarbon 14C age dating of pearls: Historic or recent?

Samples for our study:

Radiocarbon 14C

Cosmic rays produce free neutrons in the atmosphere. These neutrons react with 14N (7 neutrons and 7 protons) and form 14C, a radioactive isotope (8 / 6). Normal carbon 12C (6 / 6) is lighter than radiocarbon 14C.

$$^{14}\text{N} + n \rightarrow ^{14}\text{C} + p$$

In the atmosphere, carbon is mostly found as CO$_2$, with a steady-state between these two isotopes.

The 14C / 12C ratio is approx. 1.2×10^{-12} (nearly constant in human history)

For comparison: With a population that is 250x higher than today, just one person would be different from all the rest.

14C decays into nitrogen by releasing an electron (a neutron is transformed into a proton).

The 14C half-decay time is 5730 years.

$^{14}\text{C} \rightarrow ^{14}\text{N} + e^{-}$
Radiocarbon ^{14}C in organisms

Organisms usually uptake carbon (radiocarbon ^{14}C and stable ^{12}C) as CO$_2$.

During the lifetime of any organism, there is a continuous steady-state in uptake and release of carbon. But after death, no further carbon exchange is possible. The ^{14}C concentration will decrease due to radioactive decay.

By measuring the $^{14}\text{C} / ^{12}\text{C}$ ratio, we get access to the age of organisms.

Prehistoric mummified "Oetzi"

^{14}C analysis - AMS accelerator mass spectrometer

- Graphite 'sputtered' by caesium ions
- Mass separation
- Counting ^{14}C atoms
- $^{14}\text{C}/^{12}\text{C}$ ratio sample (A_t) and known sample (A_0) $\Rightarrow t$

$t = -8033 \cdot \ln \frac{A_t}{A_0}$
Radiocarbon 14C age dating: Preliminary results

PC-14_1
Freshwater cultured pearl
China
~ 2000 AD

PC-14_2
Saltwater cultured pearl
Keshi-type
~ 2000
Radiocarbon 14C age dating: Preliminary results

PC-14_4
Saltwater natural pearl
Nova Scotia, Canada
~ 1950 ??

Problem of "old" ages due to mixing of carbon reservoirs (atmosphere and sediments).

PC-14_6
Freshwater natural shell
Switzerland
~ 1910
Conclusions Part I: Radiocarbon age dating

Aim of this study:
Get a better understanding of the formation age of a pearl

- Slightly destructive method (about 0.05 ct required)
- Highly sophisticated and expensive method, not for common pearl testing
- Analysis and age calculation needs much time!
- Problems of carbon reservoir mixing and carbon containing additives by glues/impregnations have to be further studied.

The data so far present is only preliminary and we will have to further investigate if this method is helpful for distinction of historic pearls from newly formed pearls!